39 research outputs found

    Individuazione della causa genetica responsabile della ipocolesterolemia nelle famiglie di Campodimele (LT)

    Get PDF
    Il progetto di studio riguarda l’individuazione della causa genetica responsabile della ipocolesterolemia nelle famiglie del comune di Campodimele(LT). Queste famiglie, caratterizzate da un’alta frequenza di individui con bassi livelli di colesterolo totale ed LDL, erano state individuate nel corso di una indagine epidemiologica dedicata ai fattori di rischio dell’aterosclerosi.Il disegno dello studio include lo screening dei geni candidati e il confronto delle caratteristiche cliniche e metaboliche tra indiviui portatori e non portatori. Nella comunità di Campodimele è stata riscontrata la mutazione S17X nel gene ANGPTL3 in tutti i probandi., inoltre sono state individuate due ulteriori mutazioni sullo stesso gene (FsE96del e FsS122. GLi omozigoti per la mutazione S17X non hanno concentrazioni rilevabile di proteina Angptl3 nel siero e una marcata riduzione di tutti il lipidi plasmatici. Gli eterozigoti mostrano una riduzione del 42% dei livelli di Angptl3 rispetto ai non-carriers ma solo una riduzione significativa del colesterolo totale e High density lipoprotein cholesterol. L'ipolipidemia familiare combinata segrega con tratto recessivo

    Individuazione della causa genetica responsabile della ipocolesterolemia nelle famiglie di Campodimele (LT)

    Get PDF
    Il progetto di studio riguarda l’individuazione della causa genetica responsabile della ipocolesterolemia nelle famiglie del comune di Campodimele(LT). Queste famiglie, caratterizzate da un’alta frequenza di individui con bassi livelli di colesterolo totale ed LDL, erano state individuate nel corso di una indagine epidemiologica dedicata ai fattori di rischio dell’aterosclerosi.Il disegno dello studio include lo screening dei geni candidati e il confronto delle caratteristiche cliniche e metaboliche tra indiviui portatori e non portatori. Nella comunità di Campodimele è stata riscontrata la mutazione S17X nel gene ANGPTL3 in tutti i probandi., inoltre sono state individuate due ulteriori mutazioni sullo stesso gene (FsE96del e FsS122. GLi omozigoti per la mutazione S17X non hanno concentrazioni rilevabile di proteina Angptl3 nel siero e una marcata riduzione di tutti il lipidi plasmatici. Gli eterozigoti mostrano una riduzione del 42% dei livelli di Angptl3 rispetto ai non-carriers ma solo una riduzione significativa del colesterolo totale e High density lipoprotein cholesterol. L'ipolipidemia familiare combinata segrega con tratto recessivo

    Effectiveness of clinical scores in predicting coronary artery disease in familial hypercholesterolemia: a coronary computed tomography angiography study

    Get PDF
    PurposeOne of the major challenges in the management of familial hypercholesterolemia (FH) is the stratification of cardiovascular risk in asymptomatic subjects. Our purpose is to investigate the performance of clinical scoring systems, Montreal-FH-score (MFHS), SAFEHEART risk (SAFEHEART-RE) and FH risk score (FHRS) equations and Dutch Lipid Clinic Network (DLCN) diagnostic score, in predicting extent and severity of CAD at coronary computed tomography angiography (CCTA) in asymptomatic FH.Material and methodsOne-hundred and thirty-nine asymptomatic FH subjects were prospectively enrolled to perform CCTA. MFHS, FHRS, SAFEHEART-RE and DLCN were assessed for each patient. Atherosclerotic burden scores at CCTA (Agatston score [AS], segment stenosis score [SSS]) and CAD-RADS score were calculated and compared to clinical indices.ResultsNon-obstructive CAD was found in 109 patients, while 30 patients had a CAD-RADS >= 3. Classifying the two groups according to AS, values varied significantly for MFHS (p < 0.001), FHRS (p < 0.001) and SAFEHEART-RE (p = 0.047), while according to SSS only MFHS and FHRS showed significant differences (p < 0.001). MFHS, FHRS and SAFEHEART-RE, but not DLCN, showed significant differences between the two CAD-RADS groups (p < .001).MFHS proved to have the best discriminatory power (AUC = 0.819; 0.703-0.937, p < 0.001) at ROC analysis, followed by FHRS (AUC = 0.795; 0.715-0.875, p < .0001) and SAFEHEART-RE (AUC = .725; .61-.843, p < .001).ConclusionsGreater values of MFHS, FHRS and SAFEHEART-RE are associated to higher risk of obstructive CAD and might help to select asymptomatic patients that should be referred to CCTA for secondary prevention

    Metabolomic Signature of Angiopoietin-Like Protein 3 Deficiency in Fasting and Postprandial State

    Get PDF
    Objective- Loss-of-function (LOF) variants in the ANGPTL3 (angiopoietin-like protein 3) have been associated with low levels of plasma lipoproteins and decreased coronary artery disease risk. We aimed to determine detailed metabolic effects of genetically induced ANGPTL3 deficiency in fasting and postprandial state. Approach and Results- We studied individuals carrying S17X LOF mutation in ANGPTL3 (6 homozygous and 32 heterozygous carriers) and 38 noncarriers. Nuclear magnetic resonance metabolomics was used to quantify 225 circulating metabolic measures. We compared metabolic differences between LOF carriers and noncarriers in fasting state and after a high-fat meal. In fasting, ANGPTL3 deficiency was characterized by similar extent of reductions in LDL (low-density lipoprotein) cholesterol (0.74 SD units lower concentration per LOF allele [95% CI, 0.42-1.06]) as observed for many TRL (triglyceride-rich lipoprotein) measures, including VLDL (very-low-density lipoprotein) cholesterol (0.75 [95% CI, 0.45-1.05]). Within most lipoprotein subclasses, absolute levels of cholesterol were decreased more than triglycerides, resulting in the relative proportion of cholesterol being reduced within TRLs and their remnants. Further, beta-hydroxybutyrate was elevated (0.55 [95% CI, 0.21-0.89]). Homozygous ANGPTL3 LOF carriers showed essentially no postprandial increase in TRLs and fatty acids, without evidence for adverse compensatory metabolic effects. Conclusions- In addition to overall triglyceride- and LDL cholesterol-lowering effects, ANGPTL3 deficiency results in reduction of cholesterol proportion within TRLs and their remnants. Further, ANGPTL3 LOF carriers had elevated ketone body production, suggesting enhanced hepatic fatty acid beta-oxidation. The detailed metabolic profile in human knockouts of ANGPTL3 reinforces inactivation of ANGPTL3 as a promising therapeutic target for decreasing cardiovascular risk.Peer reviewe

    Twelve Variants Polygenic Score for Low-Density Lipoprotein Cholesterol Distribution in a Large Cohort of Patients With Clinically Diagnosed Familial Hypercholesterolemia With or Without Causative Mutations

    Get PDF
    : Background A significant proportion of individuals clinically diagnosed with familial hypercholesterolemia (FH), but without any disease-causing mutation, are likely to have polygenic hypercholesterolemia. We evaluated the distribution of a polygenic risk score, consisting of 12 low-density lipoprotein cholesterol (LDL-C)-raising variants (polygenic LDL-C risk score), in subjects with a clinical diagnosis of FH. Methods and Results Within the Lipid Transport Disorders Italian Genetic Network (LIPIGEN) study, 875 patients who were FH-mutation positive (women, 54.75%; mean age, 42.47±15.00 years) and 644 patients who were FH-mutation negative (women, 54.21%; mean age, 49.73±13.54 years) were evaluated. Patients who were FH-mutation negative had lower mean levels of pretreatment LDL-C than patients who were FH-mutation positive (217.14±55.49 versus 270.52±68.59 mg/dL, P<0.0001). The mean value (±SD) of the polygenic LDL-C risk score was 1.00 (±0.18) in patients who were FH-mutation negative and 0.94 (±0.20) in patients who were FH-mutation positive (P<0.0001). In the receiver operating characteristic analysis, the area under the curve for recognizing subjects characterized by polygenic hypercholesterolemia was 0.59 (95% CI, 0.56-0.62), with sensitivity and specificity being 78% and 36%, respectively, at 0.905 as a cutoff value. Higher mean polygenic LDL-C risk score levels were observed among patients who were FH-mutation negative having pretreatment LDL-C levels in the range of 150 to 350 mg/dL (150-249 mg/dL: 1.01 versus 0.91, P<0.0001; 250-349 mg/dL: 1.02 versus 0.95, P=0.0001). A positive correlation between polygenic LDL-C risk score and pretreatment LDL-C levels was observed among patients with FH independently of the presence of causative mutations. Conclusions This analysis confirms the role of polymorphisms in modulating LDL-C levels, even in patients with genetically confirmed FH. More data are needed to support the use of the polygenic score in routine clinical practice

    Refinement of the diagnostic approach for the identification of children and adolescents affected by familial hypercholesterolemia: Evidence from the LIPIGEN study

    Get PDF
    Background and aims: We aimed to describe the limitations of familiar hypercholesterolemia (FH) diagnosis in childhood based on the presence of the typical features of FH, such as physical sings of cholesterol accumulation and personal or family history of premature cardiovascular disease or hypercholesterolemia, comparing their prevalence in the adult and paediatric FH population, and to illustrate how additional information can lead to a more effective diagnosis of FH at a younger age.Methods: From the Italian LIPIGEN cohort, we selected 1188 (&gt;= 18 years) and 708 (&lt;18 years) genetically-confirmed heterozygous FH, with no missing personal FH features. The prevalence of personal and familial FH features was compared between the two groups. For a sub-group of the paediatric cohort (N = 374), data about premature coronary heart disease (CHD) in second-degree family members were also included in the evaluation.Results: The lower prevalence of typical FH features in children/adolescents vs adults was confirmed: the prevalence of tendon xanthoma was 2.1% vs 13.1%, and arcus cornealis was present in 1.6% vs 11.2% of the cohorts, respectively. No children presented clinical history of premature CHD or cerebral/peripheral vascular disease compared to 8.8% and 5.6% of adults, respectively. The prevalence of premature CHD in first-degree relatives was significantly higher in adults compared to children/adolescents (38.9% vs 19.7%). In the sub-cohort analysis, a premature CHD event in parents was reported in 63 out of 374 subjects (16.8%), but the percentage increased to 54.0% extending the evaluation also to second-degree relatives.Conclusions: In children, the typical FH features are clearly less informative than in adults. A more thorough data collection, adding information about second-degree relatives, could improve the diagnosis of FH at younger age

    Spectrum of mutations in Italian patients with familial hypercholesterolemia: New results from the LIPIGEN study

    Get PDF
    Background Familial hypercholesterolemia (FH) is an autosomal dominant disease characterized by elevated plasma levels of LDL-cholesterol that confers an increased risk of premature atherosclerotic cardiovascular disease. Early identification and treatment of FH patients can improve prognosis and reduce the burden of cardiovascular mortality. Aim of this study was to perform the mutational analysis of FH patients identified through a collaboration of 20 Lipid Clinics in Italy (LIPIGEN Study). Methods We recruited 1592 individuals with a clinical diagnosis of definite or probable FH according to the Dutch Lipid Clinic Network criteria. We performed a parallel sequencing of the major candidate genes for monogenic hypercholesterolemia (LDLR, APOB, PCSK9, APOE, LDLRAP1, STAP1). Results A total of 213 variants were detected in 1076 subjects. About 90% of them had a pathogenic or likely pathogenic variants. More than 94% of patients carried pathogenic variants in LDLR gene, 27 of which were novel. Pathogenic variants in APOB and PCSK9 were exceedingly rare. We found 4 true homozygotes and 5 putative compound heterozygotes for pathogenic variants in LDLR gene, as well as 5 double heterozygotes for LDLR/APOB pathogenic variants. Two patients were homozygous for pathogenic variants in LDLRAP1 gene resulting in autosomal recessive hypercholesterolemia. One patient was found to be heterozygous for the ApoE variant p.(Leu167del), known to confer an FH phenotype. Conclusions This study shows the molecular characteristics of the FH patients identified in Italy over the last two years. Full phenotypic characterization of these patients and cascade screening of family members is now in progress

    Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study

    Get PDF
    Background: Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods: For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings: Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8-13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05-6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50-75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation: Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life

    The Role of Registers in Increasing Knowledge and Improving Management of Children and Adolescents Affected by Familial Hypercholesterolemia: the LIPIGEN Pediatric Group

    Get PDF
    Pathology registers can be a useful tool to overcome obstacles in the identification and management of familial hypercholesterolemia since childhood. In 2018, the LIPIGEN pediatric group was constituted within the Italian LIPIGEN study to focus on FH subjects under 18 years. This work aimed at discussing its recent progress and early outcomes. Demographic, biochemical, and genetic baseline characteristics were collected, with an in-depth analysis of the genetic defects. The analysis was carried out on 1,602 children and adolescents (mean age at baseline 9.9 ± 4.0 years), and almost the whole cohort underwent the genetic test (93.3%). Overall, the untreated mean value of LDL-C was 220.0 ± 97.2 mg/dl, with an increasing gradient from subjects with a negative (N = 317; mean untreated LDL-C = 159.9 ± 47.7 mg/dl), inconclusive (N = 125; mean untreated LDL-C = 166.4 ± 56.5 mg/dl), or positive (N = 1,053; mean untreated LDL-C = 246.5 ± 102.1 mg/dl) genetic diagnosis of FH. In the latter group, the LDL-C values presented a great variability based on the number and the biological impact of involved causative variants. The LIPIGEN pediatric group represents one of the largest cohorts of children with FH, allowing the deepening of the characterization of their baseline and genetic features, providing the basis for further longitudinal investigations for complete details

    Familial hypercholesterolemia: The Italian Atherosclerosis Society Network (LIPIGEN)

    Get PDF
    BACKGROUND AND AIMS: Primary dyslipidemias are a heterogeneous group of disorders characterized by abnormal levels of circulating lipoproteins. Among them, familial hypercholesterolemia is the most common lipid disorder that predisposes for premature cardiovascular disease. We set up an Italian nationwide network aimed at facilitating the clinical and genetic diagnosis of genetic dyslipidemias named LIPIGEN (LIpid TransPort Disorders Italian GEnetic Network). METHODS: Observational, multicenter, retrospective and prospective study involving about 40 Italian clinical centers. Genetic testing of the appropriate candidate genes at one of six molecular diagnostic laboratories serving as nationwide DNA diagnostic centers. RESULTS AND CONCLUSIONS: From 2012 to October 2016, available biochemical and clinical information of 3480 subjects with familial hypercholesterolemia identified according to the Dutch Lipid Clinic Network (DLCN) score were included in the database and genetic analysis was performed in 97.8% of subjects, with a mutation detection rate of 92.0% in patients with DLCN score 656. The establishment of the LIPIGEN network will have important effects on clinical management and it will improve the overall identification and treatment of primary dyslipidemias in Italy
    corecore